因为做一道Leetcode的题目(前面博客有:),需要用Space O(1)空间复杂度来中序遍历树,
看了Discuss,也上网搜了一下,发现空间O(1)可以用 Morris遍历的方法。方法介绍如下:
其中,中序遍历和前序遍历比较方便解决:
通常,实现二叉树的前序(preorder)、中序(inorder)、后序(postorder)遍历有两个常用的方法: 一是递归(recursive), 二是使用栈实现的迭代版本(stack+iterative)。 这两种方法都是O(n)的空间复杂度(递归本身占用stack空间或者用户自定义的stack)。Morris Traversal方法可以做到这两点,与前两种方法的不同在于该方法只需要O(1)空间,而且同样可以在O(n)时间内完成。要使用O(1)空间进行遍历,最大的难点在于,遍历到子节点的时候怎样重新返回到父节点(假设节点中没有指向父节点的p指针), 由于不能用栈作为辅助空间。为了解决这个问题, Morris方法用到了线索二叉树(threaded binary tree)的概念。 在Morris方法中不需要为每个节点额外分配指针指向其前驱(predecessor)和后继节点(successor), 只需要利用叶子节点中的左右空指针指向某种顺序遍历下的前驱节点或后继节点就可以了(实现中始终是右指针指向后继节点)。原版本,Morris只提供了中序遍历的方法,在中序遍历的基础上稍加修改可以实现前序,而后续就要再费点心思了。
中序遍历 步骤如下:
1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。 a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点(Cur)更新为当前节点的左孩子 注意(不是改变节点内容,而是把游标Cur继续行进到左孩子)。 b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空(恢复树的形状)。输出当前节点。当前节点更新为当前节点的右孩子。3. 重复以上1、2直到当前节点(Cur)为空。以下有图例,很容易理解。
关于时间复杂度,其实也是O(n)。分析如下:
空间复杂度:O(1),因为只用了两个辅助指针。时间复杂度:O(n)。证明时间复杂度为O(n),最大的疑惑在于寻找中序遍历下二叉树中所有节点的前驱节点的时间复杂度是多少,即以下两行代码:1 while (prev->right != NULL && prev->right != cur)2 prev = prev->right; 直觉上,认为它的复杂度是O(nlgn),因为找单个节点的前驱节点与树的高度有关。但事实上,寻找所有节点的前驱节点只需要O(n)时间。 n个节点的二叉树中一共有n-1条边,整个过程中每条边最多只走2次,一次是为了定位到某个节点,另一次是为了寻找上面某个节点的前驱节点, 如下图所示,其中红色是为了定位到某个节点,黑色线是为了找到前驱节点。所以复杂度为O(n)。
前序遍历(相比中序遍历,只是输出当前节点的顺序稍有不同)
步骤:1. 如果当前节点的左孩子为空,则输出当前节点并将其右孩子作为当前节点。2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。 a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。输出当前节点(在这里输出,这是与中序遍历唯一一点不同)。 当前节点更新为当前节点的左孩子。 b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空。当前节点更新为当前节点的右孩子。3. 重复以上1、2直到当前节点为空。
后序遍历(需要加入两个小的技巧,一是dump节点,二是倒序输出路径)
后续遍历稍显复杂,需要建立一个临时节点dump,令其左孩子是root。并且还需要一个子过程,就是倒序输出某两个节点之间路径上的各个节点。步骤:当前节点设置为临时节点dump。1. 如果当前节点的左孩子为空,则将其右孩子作为当前节点。2. 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点。 a) 如果前驱节点的右孩子为空,将它的右孩子设置为当前节点。当前节点更新为当前节点的左孩子。 b) 如果前驱节点的右孩子为当前节点,将它的右孩子重新设为空。倒序输出从当前节点的左孩子到该前驱节点这条路径上的所有节点。 当前节点更新为当前节点的右孩子。3. 重复以上1、2直到当前节点为空。
复杂度分析:
空间复杂度同样是O(1);时间复杂度也是O(n),倒序输出过程只不过是加大了常数系数。
上面三种顺序(前序、中序、后序)遍历的方法,都可以在原文作者的github里面获取:
总结:以前只知道递归和栈+迭代实现二叉树遍历的方法,现在应该了解到有使用O(1)空间复杂度的方法。